Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers
نویسندگان
چکیده
[1] Net ecosystem CO2 exchange (NEE) was measured from June 2000 through October 2001 by 10 automatic chambers at a peatland in southeastern New Hampshire. The high temporal frequency of this sampling method permitted detailed examination of NEE as it varied daily and seasonally. Summer of 2001 was significantly drier than the 30-year average, while summer of 2000 was wetter than normal. Although NEE varied spatially across the peatland with differences in plant species composition and biomass, maximum CO2 uptake was 30–40% larger in the drier summer in evergreen and deciduous shrub communities but the same or lower in sedge sites. Ecosystem respiration rates were 13– 84% larger in the drier summer depending on plant growth form with water table and temperature as strong predictors. Ecosystem respiration was also correlated with maximum ecosystem productivity and foliar biomass suggesting that plant processes, water table, and temperature are tightly linked in their control of respiratory losses. The ratio between maximum productivity and respiration declined for evergreen shrub and sedge sites between the wet and dry summer, but increased in deciduous shrub sites. A drier climate may reduce the CO2 sink function of peatlands for some growth forms and increase it for others, suggesting that ecosystem carbon and climate models should account for differences in growth form responses to climate change. It also implies that plant functional types respond on short timescales to changes in moisture, and that the transition from sedges to shrubs could occur rapidly in peatlands under a drier and warmer climate.
منابع مشابه
Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland
[1] Three years (2009–2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO2 in each year with annual carbon budgets of 26.8 ( 18.7), 15.5 ( 14.8), and 14.6 ( 21.5) g C...
متن کاملMoisture dynamics and hydrophysical properties of a transplanted acrotelm on a cutover peatland
The natural carbon storage function of peatland ecosystems can be severely affected by the abandonment of peat extraction, influencing peatland drainage, leading to large and persistent sources of atmospheric CO2. Moreover, these cutover peatlands have a low and variable water table position and high tension at the surface, creating harsh ecohydrological conditions for vegetation re-establishme...
متن کاملNet ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland
Net ecosystem exchange of CO2 was measured at a temperate peatland in southeastern New Hampshire. Classified as a mineral-poor fen owing to deep, water-logged peats that are influenced to a limited extent by groundwater, the ecosystem is dominated by plants such as sedges (Carex spp.) and evergreen shrubs. Ten automatic chambers measured fluxes every 3 h by sampling changes in headspace concent...
متن کاملSoil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracil...
متن کاملDrivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland
Land–atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and interannual variability, which subsequently affects the carbon (C) sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. Since...
متن کامل